Optimization of Personal Sound Zones with Spatial Audio

Yue Qiao* & Edgar Choueiri

3D Audio and Applied Acoustics (3D3A) Lab

Princeton University

Presented at the AES AVAR Conference Aug 16, 2022

Key questions

- 1. How to render spatial audio in personal sound zones?
 - 2. How to optimize both aspects in a single problem?

Concept of PSZ[1]

Example use cases

Cho and Chang, ICA, 2019

Ebri et al., AES Conv., 2020

Vindrola et al., JASA, 2021

Betlehem et al., IEEE Sig. Proc., 2015

Fraunhofer IDMT

Shared open space

Automotive cabins

PSZ with spatial audio

- Natural extension of crosstalk cancellation
 - Single program/listener -> multiple programs/listeners
 - Inter-aural Cancellation -> Inter-zone cancellation
- New medium for VR/AR applications
 - Headphone-free immersive experience
 - Head-externalized binaural reproduction
 - Transparent communication/interaction
 - Independent experience in shared space

Designing a PSZ system

Pressure Matching (PM)^[2]

$$\mathbf{g}^* = \underset{\mathbf{g}}{\operatorname{arg\,min}} \|\mathbf{p}_T - \mathbf{H} \cdot \mathbf{g}\|^2$$

Acoustic Contrast Control (ACC)[3]

$$\mathbf{g}^* = \arg\max_{\mathbf{g}} \frac{\|\mathbf{H}_B \cdot \mathbf{g}\|^2}{\|\mathbf{H}_D \cdot \mathbf{g}\|^2}$$

No control over phase

Not suitable for binaural audio

Rendering spatial audio for two listeners with PM

Specifying target pressure

Pressure Matching (PM)^[2]

$$\mathbf{g}^* = \underset{\mathbf{g}}{\operatorname{arg\,min}} \|\mathbf{p}_T - \mathbf{H} \cdot \mathbf{g}\|^2$$

Mono programs as input

2 input channels
$$\longrightarrow$$
 2 \mathbf{p}_T vectors

$$\mathbf{p}_{T,1} = \begin{bmatrix} p_1 \\ p_2 \\ 0 \\ 0 \end{bmatrix} \qquad \mathbf{p}_{T,2} = \begin{bmatrix} 0 \\ 0 \\ p_3 \\ p_4 \end{bmatrix}$$

Specifying target pressure

Pressure Matching (PM)^[2]

$$\mathbf{g}^* = \underset{\mathbf{g}}{\operatorname{arg\,min}} \|\mathbf{p}_T - \mathbf{H} \cdot \mathbf{g}\|^2$$

Binaural programs as input

4 input channels
$$\longrightarrow$$
 4 \mathbf{p}_T vectors

$$\mathbf{p}_{T,1} = \begin{bmatrix} p_1 \\ 0 \\ 0 \\ 0 \end{bmatrix} \quad \mathbf{p}_{T,2} = \begin{bmatrix} 0 \\ p_2 \\ 0 \\ 0 \end{bmatrix} \quad \mathbf{p}_{T,3} = \begin{bmatrix} 0 \\ 0 \\ p_3 \\ 0 \end{bmatrix} \quad \mathbf{p}_{T,4} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ p_4 \end{bmatrix}$$

Performance metrics

Two aspects of isolation performance:

- 1. Isolation between listeners
 - Acoustic Contrast (AC)
 - poor performance -> distraction by other audio
- 2. Isolation between ears
 - Crosstalk Cancellation (XTC)
 - poor performance -> lack of envelopment

Both aspects matter!
But which one is perceptually more important?

Perceptual trade-offs between AC and XTC

- Headphone-based subjective experiments
- Manually adjusted interference & crosstalk levels
- Stimuli: pop (+film); classical (+pop); film (+pop)
- Main takeaways
 - Interference and crosstalk are perceptually uncorrelated
 - Program combination affects the interference threshold
 - AC should be prioritized over XTC when both are present

Canter and Coleman, AES Conv., 2021

Finding the optimal trade-off between AC and XTC

Both aspects are treated with same priority

Add a weighting parameter α to control the priority

$$J = \alpha \|\mathbf{h}_{B2}^H \mathbf{g}\|^2 + \|\mathbf{H}_D \mathbf{g}\|^2 + \|\mathbf{h}_{B1}^H \mathbf{g} - p_1\|^2 \qquad \qquad \alpha \qquad \left\{ \begin{array}{c} \mathsf{AC} \qquad \text{Less distraction} \\ \mathsf{XTC} \qquad \mathsf{Less envelopmen} \end{array} \right.$$

Simulated examples

- Free-field condition with point sources
- randomly perturbed transfer functions
- Constant regularization @ 100-1000 Hz

Simulated examples

- Free-field condition with point sources
- randomly perturbed transfer functions
- Constant regularization @ 100-1000 Hz

$$\mathbf{p}_T = \begin{bmatrix} p_1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

Optimizing the trade-off

- Principle: trading off XTC for higher AC
- Observations
 - AC and Err are mostly affected by α at low frequencies
 - XTC is affected at almost all frequencies

Optimizing the trade-off

- For $AC_0 \le 25$ dB, XTC_0 is set to 5 or 10 dB

Optimal α

Optimized XTC & AC

Takeaways

- Less distraction is preferred over better spatialization when both are present
- Trade-off can be optimized by adjusting the weights in the PM cost function
- Trade-off mostly exists at low frequencies
 - High frequencies: independently addressed by beamforming

Caveats

- Established subjective preferences were based on full-range stimuli
- Optimization parameters need to be tuned for each case
- Reproduction error is unconstrained during optimization (might lead to distortion issues)

Future directions

- Incorporating other metrics
 - tonal coloration
 - dynamic range loss
- Objective & subjective evaluation with different threshold levels
- Adaptive solutions with head tracking

Optimization of Personal Sound Zones with Spatial Audio

Yue Qiao* & Edgar Choueiri

3D Audio and Applied Acoustics (3D3A) Lab

Princeton University

Presented at the AES AVAR Conference Aug 16, 2022

